手机上的视频怎么加密?
加密手机上的视频可以试试手机加密软件misuo.
手机加密软件MISUO加密照片的步骤:
1、首先,输入密码打开软件。
2、其次,在软件界面点击下方的小锁按钮,选择要加密的视频。
3、选择要加密的视频,点击小锁按钮,然后选择加密的类型(这里选择普通加密),加密完成。
如何 *** 1分钟的小视频
首先在开机时按F8,进入安全模式界面。但是进去的时候如果等待了几分钟都无反应,上面一直显示请稍等的话就复位键重启电脑,如果电脑之前装有一键GHOST备份,就可以果断还原试一下,但是假如还原之后还是如此。
短视频运营实时更新
链接:
?pwd=2D72
提取码:2D72
资源包含:短视频带货好物分享实操、剪映教程完整版 5980大蓝线下课 陈厂长最新 *** 课 短视频拍摄稳定器课程 抖音解封话术 抖音小店低成本引流500单总结 快手短视频爆粉变现 零基础学航拍 2022开课吧透透糖:短视频带货爆单实战营 修龙抖音房产 零基础短视频运营策划教程 张sir豆荚运营 .莽哥·餐饮实体店引流课程 孙晓迪职业导演核心课 群响 IP06期 短视频编导先导课(文案公式+三个表格推导) 朋友圈收费138元的抖音最新搬运技术 抖音变现+抖音新项目+信息换金术,三套合集【无水印】 【安心】口播入门与技巧课—从小白到高手 有了表现力咋拍都能火的短视频表演课 七天陪跑系统实战课【完结】 从0开始学习剧本杀 等
怎么破解网上的加密视频
破解加密视频 ***
数字版权保护(DRM,Digital Rights Manager)介绍
数字版权保护 *** 主要有两类,一类是以数据加密和防拷贝为核心的DRM技术,另一类是采用数字水印技术。
数据加密和防拷贝为核心的DRM技术,是把数字内容进行加密,只有授权用户才能得到解密的密钥,而且密钥可以与用户的硬件信息绑定的。加密技术加上硬件绑定技术,防止了非法拷贝,这种技术能有效地达到版权保护的目的,当前国内外大部分计算机公司和研究机构的DRM技术采用这种 *** ,针对各个应用领域,有不同的DRM系统: (1) 流媒体的DRM
流媒体的DRM主要有Microsoft Windows Media DRM、Real DRM等。 (2) eBook的DRM系统
eBook 的DRM技术相对比较成熟,国内外的应用也较多。国外的eBook DRM系统,有Microsoft DAS、Adobe Content Server(原Glas *** ook Content Server)等等,国内的eBook DRM系统有方正Apabi数字版权保护系统。 (3) 电子文档的DRM
电子文档的DRM有SealedMedia Enterprise License Server、Authentica Active Rights Management以及方正Apabi Office DRM、方正Apabi CEB DRM等等。 (4) 其他DRM研究工作
其他作DRM研究的有Intertrust的DigiBox和Rights|System,IBM的
Cryptolope等等,这些系统注重DRM基本原理的研究,不针对具体的某一类数字内容。 更多
之一部分 DRM简介
数 字版权保护技术可有效地杜绝通过 *** 和计算机非法复制、拷贝、传送数字信息产品。数字版权保护功能如下:DRM服务器软件是一个端到端的数字版权管理系 统,实现一个可扩展的平台用来安全地分发数字产品。它采用的核心技术主要是密码学,系统构架应该和具体的应用结合,比如与mpeg4相关应用等。 数字版权管理系统保护数字信息产品不受下列行为的攻击:
□ 用户未经授权,通过欺骗或解密的方式在线收看或离线播放流媒体内容。 □ 授权用户将数字内容以未经保护的形式保存或分发。 □ 用户对数字内容进行许可证限制范围之外的操作。 □ 授权用户将自己的许可证提供给他人使用。
□ 实现在线版权保护和下载数字版权保护两种方式。 对用户操作的限制可包括:
□ 播放时间限制(播放许可证的生效日期和失效日期)。
□ 许可证与用户使用的硬件环境绑定。 在DRM 中,首先建立数字节目授权中心,它类似于我们通常熟知的CA认证机构。编码压缩后的数字节目内容利用密钥进行加密,加密后的数字节目头部存放KeyID和 节目授权中心的URL。当用户进行点播时,发出请求,再通过授权中心送来的密钥进行解密。DRM在实际应用中通常采用不对称加密算法对内容加密,并采用安 全的数据库存储。加密算法用于内容加密和证书发放:在证书传送之。
关于数字水印在 *** 安全方面的应用
数字水印技术数字水印(Digital Watermarking)技术是将一些标识信息(即数字水印)直接嵌入数字载体(包括多媒体、文档、软件等)当中,但不影响原载体的使用价值,也不容易被人的知觉系统(如视觉或听觉系统)觉察或注意到。通过这些隐藏在载体中的信息,可以达到确认内容创建者、购买者、传送隐秘信息或者判断载体是否被篡改等目的。数字水印是信息隐藏技术的一个重要研究方向。
作为数字水印技术基本上具有下面几个方面的特点:
----安全性:数字水印的信息应是安全的,难以篡改或伪造,同时,应当有较低的误检测率,当原内容发生变化时,数字水印应当发生变化,从而可以检测原始数据的变更;当然数字水印同样对重复添加有有强的抵抗性
----隐蔽性:数字水印应是不可知觉的,而且应不影响被保护数据的正常使用;不会降质;
----鲁棒性:是指在经历多种无意或有意的信号处理过程后,数字水印仍能保持部分完整性并能被准确鉴别。可能的信号处理过程包括信道噪声、滤波、数/模与模/数转换、重采样、剪切、位移、尺度变化以及有损压缩编码等。主要用于版权保护的数字水印易损水印(Fragile Watermarking),主要用于完整性保护,这种水印同样是在内容数据中嵌入不可见的信息。当内容发生改变时,这些水印信息会发生相应的改变,从而可以鉴定原始数据是否被篡改。
----水印容量:是指载体在不发生形变的前提下可嵌入的水印信息量。嵌入的水印信息必须足以表示多媒体内容的创建者或所有者的标志信息,或购买者的序列号,这样有利于解决版权纠纷,保护数字产权合法拥有者的利益。尤其是隐蔽通信领域的特殊性,对水印的容量需求很大。
数字水印的分类
----1.按特性划分
----按水印的特性可以将数字水印分为鲁棒数字水印和易损数字水印两类。鲁棒数字水印主要用于在数字作品中标识著作权信息,利用这种水印技术在多媒体内容的数据中嵌入创建者、所有者的标示信息,或者嵌入购买者的标示(即序列号)。在发生版权纠纷时,创建者或所有者的信息用于标示数据的版权所有者,而序列号用于追踪违反协议而为盗版提供多媒体数据的用户。用于版权保护的数字水印要求有很强的鲁棒性和安全性,除了要求在一般图像处理(如:滤波、加噪声、替换、压缩等)中生存外,还需能抵抗一些恶意攻击。
----易损水印(Fragile Watermarking),与鲁棒水印的要求相反,易损数字水印主要用于完整性保护,这种水印同样是在内容数据中嵌入不可见的信息。当内容发生改变时,这些水印信息会发生相应的改变,从而可以鉴定原始数据是否被篡改。易损水印应对一般图像处理(如:滤波、加噪声、替换、压缩等)有较强的免疫能力(鲁棒性),同时又要求有较强的敏感性,即:既允许一定程度的失真,又要能将失真情况探测出来。必须对信号的改动很敏感,人们根据易损水印的状态就可以判断数据是否被篡改过。
----2.按水印所附载的媒体划分
----按水印所附载的媒体,我们可以将数字水印划分为图像水印、音频水印、视频水印、文本水印以及用于三维网格模型的网格水印等。随着数字技术的发展,会有更多种类的数字媒体出现,同时也会产生相应的水印技术。
----3.按检测过程划分
----按水印的检测过程可以将数字水印划分为明文水印和盲水印。明文水印在检测过程中需要原始数据,而盲水印的检测只需要密钥,不需要原始数据。一般来说,明文水印的鲁棒性比较强,但其应用受到存储成本的限制。目前学术界研究的数字水印大多数是盲水印。
----4.按内容划分
----按数字水印的内容可以将水印划分为有意义水印和无意义水印。有意义水印是指水印本身也是某个数字图像(如商标图像)或数字音频片段的编码;无意义水印则只对应于一个序列号。有意义水印的优势在于,如果由于受到攻击或其他原因致使解码后的水印破损,人们仍然可以通过视觉观察确认是否有水印。但对于无意义水印来说,如果解码后的水印序列有若干码元错误,则只能通过统计决策来确定信号中是否含有水印。
----5.按用途划分
----不同的应用需求造就了不同的水印技术。按水印的用途,我们可以将数字水印划分为票证防伪水印、版权保护水印、篡改提示水印和隐蔽标识水印。
----票证防伪水印是一类比较特殊的水印,主要用于打印票据和电子票据、各种证件的防伪。一般来说,伪币的制造者不可能对票据图像进行过多的修改,所以,诸如尺度变换等信号编辑操作是不用考虑的。但另一方面,人们必须考虑票据破损、图案模糊等情形,而且考虑到快速检测的要求,用于票证防伪的数字水印算法不能太复杂。
----版权标识水印是目前研究最多的一类数字水印。数字作品既是商品又是知识作品,这种双重性决定了版权标识水印主要强调隐蔽性和鲁棒性,而对数据量的要求相对较小。
----篡改提示水印是一种脆弱水印,其目的是标识原文件信号的完整性和真实性。
----隐蔽标识水印的目的是将保密数据的重要标注隐藏起来,限制非法用户对保密数据的使用。
----6.按水印隐藏的位置划分
----按数字水印的隐藏位置,我们可以将其划分为时(空)域数字水印、频域数字水印、时/频域数字水印和时间/尺度域数字水印。
----时(空)域数字水印是直接在信号空间上叠加水印信息,而频域数字水印、时/频域数字水印和时间/尺度域数字水印则分别是在DCT变换域、时/ 频变换域和小波变换域上隐藏水印。
----随着数字水印技术的发展,各种水印算法层出不穷,水印的隐藏位置也不再局限于上述四种。应该说,只要构成一种信号变换,就有可能在其变换空间上隐藏水印。
按水印的特性可以将数字水印分为鲁棒数字水印和脆弱数字水印。鲁棒数字水印主要用于在数字作品中标识著作权信息,它要求嵌入的水印能够经受各种常用的编辑处理;脆弱数字水印主要用于完整性保护,脆弱水印必须对信号的改动很敏感,人们根据脆弱水印的状态就可以判断数据是否被篡改过。 Enterprise Culture--Its Meaning and Implications for Education and Training.
AA Gibb - Journal of European Industrial Training, 1987 - eric.ed.gov
Building an Enterprise Culture in the Public Sector: Reform of the Public Sector in Australia, …
RC Mascarenhas - Public Administration Review, 1993 - *** TOR
Entrepreneurship education within the enterprise culture -
SL Jack, AR Anderson - International Journal of Entrepreneurial Behaviour and …, 1999 - emeraldinsight.com
The Enterprise Culture and the Inner City
N Deakin - 1993
Welfare Dependency, the Enterprise Culture and Self-Employed Survival
R MacDonald - Work Employment Society, 1996 - wes.sagepub.com
Self-Employment and Home Ownership after the Enterprise Culture
R Burrows, J Ford - Work Employment Society, 1998 - wes.sagepub.com 数字水印(或数字水印),是指将特定的信息嵌入数字讯号中,数字讯号可能是音频、图片或是影片等。若要拷贝有数字水印的讯号,所嵌入的信息也会一并被拷贝。数字水印可分为浮现式和隐藏式两种,前者是可被看见的水印(visible watermarking),其所包含的信息可在观看图片或影片时同时被看见。一般来说,浮现式的水印通常包含版权拥有者的名称或标志。右侧的示例图片便包含了浮现式水印。电视台在画面角落所放置的标志,也是浮现式水印的一种。隐藏式的水印是以数字数据的方式加入音频、图片或影片中,但在一般的状况下无法被看见。隐藏式水印的重要应用之一是保护版权,期望能借此避免或阻止数字媒体未经授权的复制和拷贝。隐写术(Steganography)也是数字水印的一种应用,双方可利用隐藏在数字讯号中的信息进行沟通。数字照片中的注释数据能记录照片拍摄的时间、使用的光圈和快门,甚至是相机的厂牌等信息,这也是数字水印的应用之一。某些文件格式可以包含这些称为“metadata”的额外信息。数字水印 scheme 示例 一般常见的数字水印 scheme 定义为:其中 E 定义了嵌入(embedding)功能、D 侦测(detecting)功能、R 恢复(retrieval)功能,M 则是所夹带的消息。此外,嵌入参数 定义了 E 定义嵌入功能使用的参数组, 定义了侦测参数,而 恢复参数。因此,每一个水印 scheme Ω 根据上述的参数不同可能会有不同的结果。[编辑] 性质要求 安全性:水印信息应当难以篡改、难以伪造;隐蔽性:水印对感官不可知觉,水印的嵌入不能影响被保护数据的可用性大大降低。不具备这一特性的水印,称为可见水印(Visible Watermarking)。如电视台播放信号的时候在某个角落经常嵌有它的标志。鲁棒性:水印能够抵御对嵌入后数据的一定操作,而不因为一些细微的操作而磨灭。包括数据的传输中产生的个别位错误,图像或视频、音频的压缩。不具备这一特性的水印,称为脆弱水印(Fragile Watermarking)。水印容量:是指载体可以嵌入水印的信息量。[编辑] 分类 [编辑] 常用技术 [编辑] 数字水印生成技术 伪随机生成扩频水印[编辑] 数字水印嵌入技术 LSBQIMSCS[编辑] 数字水印检测技术 计算自相关[编辑] 数字水印攻击技术 剪切-粘贴攻击[编辑] 图像水印技术 [编辑] 常用水印攻击 数字模拟转换(A/D,D/A conversion)旋转(rotation)放大缩小(scaling)切割(cropping)压缩(compression)再量化(requantization)再取样(resample)[编辑] 功能需求 隐蔽性或透明性(Imperceptible or Transparency)-原始图像在嵌入数字水印后的差异必须是人眼所无法察觉到的,也就是不能降低或破坏原始图像的品质。不易移除性(Non-removable)-水印要设计得不容易甚至不可能被黑客移除。强健性(Robustness)-经过水印技术处理后的图像经由噪声、压缩处理、图像处理以及各种攻击后,所萃取的数字水印仍然可以清楚的体现以便于人眼辨识或判断。明确性(Unambiguous)-萃取的数字水印,经过各种攻击后,失真不会很严重,可以明确的让拥有者辨识或判断。[编辑] 数字水印的发展 [编辑] 图像水印的发展 一般而言,图像水印技术是通过更改图像中的数据来嵌入水印,其作法上有两个主要的领域:空间域(时间域)法早期的图像水印研究主要是发展在空间域中,以灰阶图像而言,每个取样点(pixel)一般是以八个位来表示,且由更高有效位(MSB)开始向右排列至更低有效位(LSB),表示数据位的重要性次序,因此可通过更改每个取样点中敏感度更低的LSB来嵌入水印信息,使得水印具有较高的隐密性,这是信息隐藏技术中最常被用来藏入信息的一个既简单又容易实现的 *** 。但其缺点是容易被不法人士恶意破坏,且难以抵抗噪声、压缩处理、图像处理以及剪切处理等各种攻击。/dd变换域法在频域中的水印主要是原始图像转换到频域里,在加入水印数据,将水印嵌入至不同频率成份讯号可满足不同需求,当嵌入至高频讯号,较不容易被人眼视觉系统所察觉,嵌入至低频成份讯号,由于能量较高因而不容易被破坏。/dd离散余弦转换域离散余弦转换是静态图像压缩技术(如JPEG)以及动态视频压缩技术(如MPEG)中的主要内核,而从图像以8*8的像素区块为单位来做离散余弦转换,转换后仍然以8*8的区块大小来表示频率信息,其目的主要是将区块中各个像素的关系性打散,使得大部分的能量可以集中在少数几个基底函数上。/dd以离散余弦转换为工具,根据水印所嵌入的频带位置不同又分为:嵌入DC系数的水印技术嵌入低频系数的水印技术/dd小波域离散小波转换也是一种可将图像的空间域信息转换为频率域信息的技术,其优点除了可以有效的将图像中各个像素的关系性打散之外,还提供了多重分辨率与多频率的特性,使得在处理声音、图像以及视频等信息时的弹性较大,因此近年来被广泛的应用在图像处理、数据压缩以及信息隐藏等研究领域。而离散小波转换可通过相对应的滤波器而分别作用在图像信息中的列与行来实现/dd以离散小波转换为工具,根据水印所嵌入的频带位置不同又分为: 嵌入频带HL1的水印技术嵌入频带LH2的水印技术[编辑] 参考 [编辑] 参考资料 《音视频处理讲义》,张宝基 著孙圣和,陆哲明,牛夏牧. 数字水印技术及应用,北京, 2004.
我用MATLAB做的水印,怎么用stirmark进行攻击?急求
肯定对 望采纳
3.1水印的预处理
采用二值图像作为待嵌入的水印数据,本文针对的研究对象因为是二维图像故采用的是二维Arnold变换。
二维Arnold变换定义为:
(3-1)
其中,(x,y)是原图像的像素点,(x’,y’)是变换后新图像的像素点,N是图像阶数,即图像的尺寸大小,一般多为正方形图像。由于Arnold变换具有周期性,因此可利用其周期性Period来对图像进行反变换。即在水印嵌入过程中可将水印置乱次数作为密钥times,再进行水印嵌入,当水印提取出来时,再将其继续: (Period-times)次即可使其恢复至原图。这就是利用Arnold的正变换来进行的置乱恢复方案。Arnold变换次数由版权所有者保管。
对水印进行置乱有以下优点:
(1) 采用置乱技术的合法者可以自由控制算法的选择,参数的选择以及使用随机数技术,从而使非法使用者难以破译图像内容,可以提高水印信息的安全性;
(2) 置乱技术可以分散错误比特的分布,提高数字水印的视觉效果,从而增强其鲁棒性。
3.2 视频水印的嵌入
水印嵌入算法关键在于以下三点:
(1) 水印的结构;
(2) 水印的嵌入区域;
(3) 嵌入技巧;
本文选取二值图像作为水印。为了提高水印的鲁棒性,大多数的DCT域水印算法把水印信号嵌入到DCT系数的低频部分。但低频区域是图像的能量集中部分,嵌入到低频会降低透明性。而嵌入在高频虽然透明性比较好,但对大多数的图像处理对高频成分影响较大,从而降低水印的鲁棒性.于是大多数的水印算法将水印信号嵌入在载体图像DCT系数的中频部分,以达到透明性和鲁棒性的更佳折衷。各种嵌入技巧的最终目的还是为了尽量地提高水印的鲁棒性和透明性。
用于版权保护的数字水印在尽量提高鲁棒性的同时还要满足人类的视觉极限,因此必须根据HVS找到嵌入位置。
本文将HVS归纳为运动敏感性、纹理敏感性和亮度敏感性。在接下来的嵌入过程中,充分利用了这些特性。如图3-1中间分支所示。
嵌入过程如图3-1所示。
图3-1 水印嵌入过程
从视频中读取亮度分量Y,因为它是最有效的数据,根据NEC算法,嵌入到它里面的水印才具有最强的鲁棒性。根据式(3-2)所示的运动敏感性阈值计算公式,寻找32帧满足敏感性比较大的视频帧Yi (i=1,2,…32)。
(3-2)
其中 (t代表当前帧的编号)
接下来,将Y32中的数据按照64*64的尺寸切分成20块BYij (j=1,2,…20),于是我们可得到20块尺寸为64*64*32的三维数据块BYk (k=1,2,…20),如图2-3所示。
图3-2 亮度分量的分块
根据式(3-3)、式(3-4)所示的亮度敏感性Lk和纹理敏感性Dk计算公式,通过计算,我们选择计算值都比较高的20块数据中的一块 ( )作为水印的嵌入块。
(3-3)
(3-4)
其中, 是BYk中的亮度数据, 。
最后,折衷考虑复杂度和性能,我们对选定的一块数据块 实施了2阶三维DCT变换。根据NEC算法的思想,且为了抵抗滤波和压缩攻击,我们将置乱后的水印序列嵌入到了之一帧DCT系数c(u,v)中,详见式(3-5)。
(3-5)
其中,w(u,v)是水印序列中的数据,c(u,v)是DCT变换后之一帧中的系数,c’(u,v)是嵌入水印后的系数,S是非负整数(且满足T1=S/4, T2=3*T1)。
嵌入完成后,对c’(u,v)实施反2阶三维DCT变换就得到了嵌入水印后的视频数据,再将它们放回原来的位置即可。
需要说明的是,在整个嵌入过程中,所有用到的参数都应作为密钥保留。
具体方案如下所述:
之一步:抽取32帧视频Y分量数据:
(1) 读取视频文件;
(2) 提取所有的Y分量,把所有的Y分量分为32组;
(3) 每组4帧,从各组中选出一个最运动敏感的,判断每组中更大的Y_deltmax,存入变量m;
(4) 定位更大的Y_deltmax,存入变量w;
Y32是就是所需的视频帧中Y分量满足敏感性的32帧视频 (355*288*32)。
第二步:分块过程:
(1) 对行分块(4块);
(2) 对列分块(5块);
(3) 隔十帧取一帧,共从32帧中取4帧以降低运算量;
(4) 一个数一个数的赋值;
切成20块,每块为64*64*4的数据块BY,维数不同,只能逐个象素赋值。
第三步:根据公式计算数据块BY的亮度敏感性L和纹理敏感性D
第四步:选取L和D都比较大的一块嵌入水印
(1) 判断更大的L,存入变量Lm;
(2) 去掉这个更大的块再比较;
(4) 赋之一块的L的权重为20;
(5) 计算第2块到第20块的L的权重;
(6) 同理对D进行处理;
(7) 计算每块BY的权重;
(8) 对所有的20块BY的权重qz按由小到大的顺序进行排序,并保持原来的位置索引index,则index[20]就是所要选取的块;
第五步:三维DCT变换
由于视频是由图像数据流组成的,所以可以把视频的每一帧看作是一幅静止的图像。对运动图像序列进行3D-DCT,可以视为先对视频的每一帧进行2D-DCT,再对帧间方向进行1D-DCT。
第六步:嵌入水印数据
将置乱的水印序列嵌入所选的DCT系数中,即嵌入经过3D-DCT变换后的数据块中的之一帧数据中。然后把这些数据进行反3D-DCT变换后放回原位置。
第七步:将所选的数据放回原位置
最后一步:写视频文件
3.3视频水印的检测
水印提取是嵌入的逆过程,本算法的一大优势是,水印提取时无需原始视频数据的参与,但依然需要一些参数。它们是:
(1) 嵌入过程第四步产生的块BY的排序结果,由此我们可以得知水印的大致嵌入位置;
(2) 嵌入时指定的参数S;
(3) 需要Arnold变换的次数和周期;
获得了上面的各项参数,水印的提取就十分简单,具体过程如图3-3所示。
图3-3 水印盲提取过程
方案如下:
从待提取水印的视频数据 (可能是被攻击过后的视频)中抽取出亮度分量Y’,根据密钥,抽出32帧中的四帧亮度分量 ,然后分别从这组数据中提取水印。
在图3-3中,首先将 分隔成20块 ,并找到和 对应的 。然后,对 做二阶三维DCT变换,根据式(3-6)提取出水印数据 。
(3-6)
其中, 是DCT系数。
最后,我们将 进行Arnold变换,得到水印图像,作为最终提取出的水印。
具体步骤如下所述:
之一步:抽取32帧视频Y分量数据:
(1) 读取嵌入水印图像的视频文件;
(2) 提取所有的Y分量,把所有的Y分量分为32组;
(3) 每组4帧,从各组中选出一个最运动敏感的,判断每组中更大的Y_deltmax,存入变量m;
(4) 定位更大的Y_deltmax,存入变量w;
Y32是就是所需的视频帧中Y分量满足运动敏感性的32帧视频,Y32是一个355*288*32的三维数组。
第二步:分块过程:
(1) 对行分块(4块);
(2) 对列分块(5块);
(3) 隔十帧取一帧,从32帧 *** 取4帧以降低运算量;
(4) 一个数一个数的赋值;
切成20块,每块为64*64*4的数据块BY,维数不同,只能逐个象素赋值。
经过计算其亮度敏感性和纹理敏感性并排序,index[20]就是本文算法中嵌入水印的块;
第三步:三维DCT变换
第四步:Arnold变换
由于本算法中水印图像是二值图像,其Arnold变换是二维变换,周期是Period,嵌入水印时变换了times次,所以此处只需变换(Period-times)次就可得到结果。
第五步:写图像文件
提取水印图像数据并写成图像文件
第六步:检测水印图像存在与否,并与原水印图像比较。
最后一步:进行实验,验证本文算法的可见性和鲁棒性。
经过以上步骤就是水印图像信息嵌入视频中的 *** ,具体实现过程见第四章。
4 用MATLAB实现视频水印的嵌入和检测
Matlab是近年来在国内外广泛流行的一种可视化科学计算软件。它的特点是结构简单、数值计算高效、图形功能完备、图像处理方便,是国际公认的更优秀的科学计算与数学应用软件之一。利用Matlab实现数字水印图像算法便捷、高效,省去了繁琐的程序代码,避免了科研人员在编程上浪费精力。
其内容已涉及矩阵代数、微积分、应用数学、信号与系统、神经 *** 、小波分析及应用、数字图像处理、计算机图形学、自动控制与通信技术等诸多方面,是科学计算、系统仿真、信号与图像处理的主流软件,受到了各方科研人员的青睐,在数字水印技术中得到了广泛的应用。将Matlab应用于数字水印技术,其优点主要有以下几个方面:
(1) 强大的数值计算功能
视频水印技术是针对图像进行研究的,而图像是由矩阵表达的,将水印嵌入视频中及从视频中将水印提取出来都意味着大量的矩阵运算,而矩阵运算更是Matlab语言的核心,表达自然、直接。因此,利用Matlab强大的矩阵运算功能来实现图像水印技术非常合适。
(2) 方便的图像读取和显示功能
视频水印首先要将数据从视频中读取出来,嵌入水印后还要将嵌入水印后的数据还原为视频。Matlab为用户提供了专门的图像处理函数,用于读写显示图像数据。这种 *** 不像其他编程语言那样,需要编写复杂的代码,只需要简单地调用Matlab提供的函数即可,相关的函数及其功能主要有下列一些:
imread 将图像读入工作空间;
imwrite 将图像写入磁盘;
image 提供最原始的图像显示函数;
imshow 是最常用的显示各种图像的函数;
load将文件读入工作空间;
(3) 高效的图像变换功能
数字水印嵌入算法一般分空域 *** 和频域 *** 。空域 *** 指通过改变象素的亮度值来加入数字水印:频域 *** 指图像通过某种变换后再嵌入数字水印。与空域法相比,频域法具有如下优点:在变换域中嵌入的水印信号可以分布到空域的所有象素上,有利于保证水印的不可见性。在变换域中,视觉系统的某些特性(如视频特性)可以更方便地结合到水印编码过程中。变换域的 *** 可以与国际数据压缩标准兼容,从而实现压缩域内的水印编码。因此,变换域的 *** 应是水印算法未来趋势的主流。但是变换域的算法一般来讲计算量都比较大,需要复杂的编程运算,Matlab则改变了这种现状。在Matlab图像处理工具箱中,提供了常用的图像变换函数,复杂的变换域算法在Matlab中只需简单地调用函数即可实现,充分体现了使用Matlab的简便性和高效性。
主要图像变换函数如下:
dct是一维离散余弦变换;
idct是一维离散余弦逆变换;
dct2是二维离散余弦变换;
idct2是二维离散余弦逆变换;
(4) 丰富的图像处理函数
水印技术要求嵌入的水印不可见且有较强的鲁棒性。不可见性可通过视觉效果和计算图像的峰值信噪比来比较优劣,而鲁棒性则要对水印后图像进行各种攻击,通过比较攻击后图像提取出的水印情况来说明问题。Matlab有各种图像处理函数,可实现对图像的各种攻击。
综上所述,Matlab具有语言简洁、函数丰富、使用方便、数值计算高效等特点,将功能强大的Matlab软件应用于数字水印技术是有效的选择,因此,本文采用Matlab对图像水印进行研究。
4.1水印的嵌入过程
(1) 基于Arnold变换的图像置乱
Matlab实现如下:
Arnold变换由function r=Arnold(w0,row,colum,times) 实现,其中w0为读取的图像数据,row是行数,colum是列数,times是Arnold变换次数。
function r=Arnold(w0,row,colum,times)
for k=1:times
for i=1:row
for j=1:colum
i1=i+j;
j1=i+2*j;
if i1row
i1=mod(i1,row);
end
if j1colum
j1=mod(j1,colum);
end
if i1= =0
i1=row;
end
if j1= =0
j1=colum;
end
w1(i1,j1)=w0(i,j);
end
end
w0=w1;
end
r=w0;
用imwrite(w0,'Arnold.bmp', 'bmp')写置乱后的图像文件;在MATLAB中用imshow('Arnold.bmp')显示此图像。
本文采用二维的二值水印图像watermark.bmp,我们将图像数据(64*64)扫描到二维的矩阵中并实施Arnold变换,从而得到置乱后的二维矩阵。随着迭代次数的增加,图像逐渐趋于混乱,不过到一定次数时,又将回到原图。因为watermark.bmp大小为64*64,故经过试验图像迭代48次后将回到原图,即周期性Period=48。
本算法选择置乱8次,因为8次Arnold变换后原水印图像已经成为无形状的图像。实验结果表明,该 *** 能较好地刻划图像的置乱程度,与人的视觉基本相符。但需要指出的是不一定图像的置乱次数越多其置乱度就越高。所以,在水印嵌入时,为了提高其鲁棒性而增加置乱次数的 *** 是不科学的,合理的做法是计算置乱后图像的置乱度,达到较为满意的置乱度后就可停止置乱,避免盲目的提高置乱次数。
置乱次数作为密钥有视频版权所有者保管,如果非法所有者不知道置乱次数就很难恢复出原水印图像。
原水印图像如图4-1所示,本算法实现置乱8次后效果如图4-2所示:
图4-1 水印原图像 图4-2 置乱8次后
(2)Matlab实现嵌入过程:
本文中选取352×288×142的yuv格式视频流进行测试。YUV颜色模型是一种常用的颜色模型,其基本特征是将亮度信号与颜色信号分离,由于人眼对亮度的变化比对颜色的变化敏感,因此,YUV模型中Y分量的值所占带宽大于等于彩色分量所占带宽。YUV色彩空间模型可以在一定程度上避免RGB模型的高分散性和高相关性所带来的闭值划分问题,计算也较为简单。这种色彩空间模型中Y和UV分量是相互独立的,反映了人眼观察彩色的视觉规律,在实际中应用较多。其中“Y”表示明亮度(Luminance或Luma),也就是灰阶值;而“U”和“V”表示的则是色度(Chrominan“或Chroma),作用是描述影像色彩及饱和度,用于指定像素颜色。因此选择YUV颜色空间更加稳定,易于分析。
本文选择测试视频中的第39帧如图4-3所示。YUV格式的视频中Y:U:V=4:2:2,但通俗叫“420”格式。
图4-3 未嵌入水印的视频
之一步:读取文件;
读取视频文件由[yuv,Y,u,v,num_f]=loadyuv(filename)实现,filename是所选取得视频文件名称。yuv是一个四维数组,它返回的是视频的yuv分量,Y是亮度分量,u和v是色彩分量,num_f是视频文件中所有帧的数目。
读取一帧数据的YUV分量在Matlab中由以下源代码实现:
function [YUV,Y,U,V] = loadFileYUV(width,heigth,Frame,fileName,format)
[Teil_h,Teil_b]=YUVFormat(format);
fileId = fopen(fileName,'r');
其中width:每一帧的宽度;heigth:每一帧的高度;Frame:当前load的那一帧;filename:视频文件名;Teil_h:垂直比例参数;Teil_b:水平比例参数;YUV:返回值,返回YUV分量,是一个三维变量,本文算法中将U、V分量的宽度和高度设成与Y一样的了,因此U、V分量中有重复的。YUV(:,:,1)存放Y分量;YUV(:,:,2)存放U分量;YUV(:,:,3)存放V分量;Y,U,V是三个分量的实际值,二维矩阵,没有重复,他们的长度可能不一样。
Y_delt(j)=delt(Y(:,:,w(i)),Y(:,:,4*(i-1)+j));
其中Y_delt是当前帧与下一组各帧的Y的差,m(i)=max(Y_delt(j));判断每组中更大的Y_deltmax,存入变量m,以此来得到每组中最运动敏感的视频帧。w(i+1)=4*(i-1)+k定位更大的Y_deltmax,存入变量w。
最后得到Y32=double(Y(:,:,w)), Y32是视频帧中Y分量满足敏感性的32帧视频是一个355*288*32的三维数组。
第二步:分块;
分块时因为需要块标号,由此造成维数不同,所以只能逐个象素赋值,在Matlab中由BY(t1,t2,t3,j*5+k+1)= double(Y32((64*j+t1),(64*k+t2),i))实现,切成20块,每块为64*64*4的数据块BY ,其中t1是块的杭坐标,t2是块的列坐标,t3帧标号,j*5+k+1是快标号。
第三步:三维DCT变换;
运动图像序列的每一帧可以看作是静止图像 对运动图像序列进行3D DCT,可以视为先对每帧进行2D DCT,再对帧间方向进行1D DCT。
%对每一块的帧间方向进行1D DCT变换
for i=1:64
for j=1:64
dcta(i,j,1:4,index(20))=dct(BY(i,j,1:4,index(20)));
end
end
%对每一块的每一帧进行2D DCT
for i=1:4
dct3a(:,:,i,index(20))=dct2(dcta(:,:,i,index(20)));
end
第四步:嵌入水印过程;
读入二值水印图像由message=double(imread('watermark.bmp'))实现 ,message是一个由0和1组成的二维数组。
将置乱的水印序列嵌入所选的dct系数中,源代码如下所示:
其中dct3a是DCT系数,index[20]是纹理敏感性和亮度敏感性都比较好的一块,S作为密钥由版权所有者保管。
S=60;
T1=S/4;
T2=3*T1;
for i=1:64
for j=1:64
if (w2(i,j)==1)
if (dct3a(i,j,1,index(20))=0)
dipin(i,j)=dct3a(i,j,1,index(20))-mod(dct3a(i,j,1,index(20)),S)+T1;
end
if (dct3a(i,j,1,index(20))0)
dipin(i,j)=dct3a(i,j,1,index(20))+mod(abs(dct3a(i,j,1,index(20))),S)-T1;
end
end
if (w2(i,j,:)==0)
if (dct3a(i,j,1,index(20))=0)
dipin(i,j)=dct3a(i,j,1,index(20))-mod(dct3a(i,j,1,index(20)),S)+T2;
end
if (dct3a(i,j,1,index(20))0)
dipin(i,j)=dct3a(i,j,1,index(20))+mod(abs(dct3a(i,j,1,index(20))),S)-T2;
end
end
end
end
第五步:三维DCT反变换;
先对块的之一帧进行二维DCT反变换,然后在对其它三帧进行二维反变换,最后对帧间方向进行一维DCT反变换。此过程由Matlab实现如下:
二维DCT反变换:
idcta(:,:,1,index(20))=idct2(dipin);
for i=2:4
idcta(:,:,i,index(20))=idct2(dct3a(:,:,i,index(20)));
end
对每一块的帧间方向进行一维DCT反变换
for i=1:64
for j=1:64
idct3a(i,j,1:4,index(20))=idct(idcta(i,j,1:4,index(20)));
end
end
第六步:把这些数据放入原位置;
第七步:写视频文件;
写视频文件由以下程序实现,其中fileId为写入视频文件的位置。
fileId = fopen('vectra_w.yuv','wb')
fwrite(fileId,Y(:,:,i)' , 'uchar');
fwrite(fileId,u(:,:,i)' , 'uchar');
fwrite(fileId,v(:,:,i)' , 'uchar');
4.2水印的检测过程
水印的检测过程就是嵌入水印的逆过程,其Matlab实现如下所示:
filename='vectra_w.yuv';此文件是对含有水印的视频(可能是被攻击过后的视频)文件。
[yuv,Y,u,v,num_f]=loadyuv(filename);
读取视频文件和三维DCT正变换其原理和嵌入过程相同,此处不再赘述。
提取水印数据在Matlab中由以下程序实现,其中S、T1、T2等都是嵌入时的密钥,版权所有者拥有它。
for i=1:64
for j=1:64
if (mod(abs(dct3b(i,j,1,index(20))),S)((T1+T2)/2))
shuiyin(i,j)=1;
end
if (mod(abs(dct3b(i,j,1,index(20))),S)=((T1+T2)/2))
shuiyin(i,j)=0;
end
end
end
Arnold反变换如下所示:
w0=shuiyin;
w2=Arnold(w0,Hm,Wm,40);
w0是检测到的水印数据,Hm和Wm是水印数据的行和列,变换次数为40。
写水印文件,检测水印图像存在与否,并且和原水印图像有无差异。
imwrite(w2,'恢复.bmp', 'bmp');
imshow('恢复.bmp');
综上,水印的嵌入主要经过将视频和水印分别进行预处理,然后根据嵌入算法选择水印的合适嵌入位置以及合理嵌入策略,从而得到含水印的视频数据。在各个环节中采用HVS特性来提高视频水印的鲁棒性.最后用相应的视频水印检测策略提取出水印从而实现视频的保护。结果显示本文算法能成功提取出水印图像。
5 实验结果与分析
对水印的性能建立合理的评估 *** 和基准是数字水印研究的一个重要内容。对视频水印的评估主要包括以下两方面:嵌入水印对视频引起的失真的主观和客观定量评估;水印鲁棒性的评估。一般而言,在水印的不可见性和鲁棒性之间需要进行折中。因此为了能够进行公平合理的性能评估,我们必须尽量保证水印系统是在可比较的条件下进行测试,即应该在给定视频视觉可见性要求的前提下进行测试。本文中首先对水印的不可见性进行测试,然后对其鲁棒性进行测试。
怎么样攻击别人的 ***
最简单的 *** 是你是否知道对方的IP地址,如果知道直接发病毒或者拼接他的IP来骚扰他,如果不知道你可以从 *** 上下一些简易的得知对方IP的软件,但是建议下载的时候小心病毒!不过不建议你攻击他人电脑!
0条大神的评论